

Underwriters Laboratories Inc._®

Restricted Substances Compliance Solutions

Testing and the Challenge of RoHS Compliance

Maxime Elbaz

General Manager

Restricted Substances Strategic Business Unit

2005 U.S. – China Standards and Conformity Assessment Workshop

Table Of Contents

- EU RoHS (2002/95/EC)
- Industry Trends
- Tools for Compliance
- Survey of Test Methods
- Certified Reference Materials
- Traditional vs. Non-Destructive Analytical Testing
- Composite vs. Homogenous Material Testing
- Method Detection & Reporting Limits
- Summary

EU - RoHS (2002/95/EC)

RESTRICTED SUBSTANCES

- Lead
- Mercury
- Cadmium
- Hexavalent Chromium
- Polybrominated biphenyl (PBB)
- Polybrominated diphenyl ether (PBDE)

EU - RoHS (2002/95/EC)

'Homogeneous Material'

- ..cannot be mechanically disjointed into different materials.
- ..of uniform composition throughout"
- ..can be, in principle, separated by mechanical actions such as unscrewing, cutting, crushing, grinding and abrasive processes.

Maximum Allowable Concentrations

0.01% (100 ppm) Cd

0.1% (1000 ppm) Pb, Hg, PBB, & PBDE

Electrical & Electronic Equipment Industry Trends

Now

- > Elimination of Lead and Chromate Colorant Systems
- Elimination of Penta and Octa BDE FR Systems
- Increase in Non-Leaded PVC Stabilization
- Increase in Component Testing & Inspection
- Decrease in Self Declaration Acceptance
- Increasing Use of Lead Free Solders
- ➤ Increasing Use of Halogen Free Circuit Board Materials
- Increasing Use of Non Hal FR Systems

Very Near Future

- End Product Design Phase Standards
- Independent Material Certification Schemes

Tools for Compliance

- ✓ Testing
- ✓ Third Party Certification
- ✓ Supply Chain Management
- ✓ Continuing Regulatory Knowledge
- ✓ Database for Materials or Products
- ✓ Quality Registration Service
- ✓ ECO Labeling
- ✓ Self Declaration

Survey of Test Methods

<u>Traditional Analytical Sample Preparation Techniques</u>

Acid Decomposition (Pb, Cd, Hg)

- ➤ Hot Plate (US EPA 3050B, ASTM E350)
- ➤ Microwave (US EPA 3052)
- ➤ Kjeldahl Flask (EN-1122)
- > Others

Extraction (PBB/PBDE)

Organic Solvent (Toluene, etc.)

Extraction (Cr⁺⁶)

- ➤ Alkaline (US EPA 3060A)
- ➤ Boiling Water (ISO 3613)

Qualitative (Cr⁺⁶)

> Spot Test (ISO 3613)

Combustion (Br)

- Oxygen Flask (ASTM D3566, Draft IEC 61189-2C12)
- Oxygen Bomb

Survey of Test Methods

Traditional Analytical Measurement Techniques

- > ICP (Pb, Cd, Hg, Cr, Br)
- > AA (Pb, Cd, Hg, Cr)
- Direct Mercury Analyzer
- Ion Chromatography (Cr+6, Br)
- Titration (Br)
- ➤ UV-VIS (Cr+6)
- GC-MS (PBB/PBDE Compounds)
- ➤ HPLC-MS or UV (PBB/PBDE Compounds)

Survey of Test Methods

Non Destructive Analytical Techniques

- Neutron Activation Analysis (NAA)
- Electron Microscopy (SEM, etc.)
- Proton Induced X-Ray Emission (PIXE)
- X-ray Fluorescence (XRF)

Traditional vs. XRF Analytical Testing

Aspect	Traditional Analytical Testing	XRF Testing		
Capital Instrument Cost		Advantage		
Speed & Testing Cost	-	Advantage		
Accuracy	Advantage	-		
Precision	Advantage	-		
Sensitivity	Advantage			
Speciation	Advantage	R) .		
False Negative/Positive Risk	Advantage	-		

Certified Reference Materials (CRM's)

Matrix	CRM Supplier	Catalogue #'s	
Polyethylene	Community Bureau of ECR-680 & 681, VDA 001 – 004		
Low Alloy Steel	NIST, USA	SRM 2166	
Aluminum	MIST, USA	SRM 855a, 856a, & 87A	
Aluminum	PAM Cormony	CRM-300	
Ferro Alloy	BAM, Germany	CRM-D 502-2	
Copper	Community Bureau of CRM075 Reference, Belgium		
	Bam, Germany CRM-211 & BAM 229		
	Community Bureau of Reference, Belgium	CRM-664	
Glass BAM, Germany		S004	

More CRM's (e.g. PBB/PBDE in plastic) are needed.

Composite vs. Homogenous Material Testing

- Homogeneous Material Testing is Consistent with RoHS Guidelines
- Composite ("Grind it Up") Material Testing Has High Risk of False Negative or "Pseudo" Compliance

Composite Material	% Mass Contribution	Cadmium Conc. (ppm)	Contribution to Mixed Sample (ppm)
HM Material A	25	120	30
HM Material B	25	60	15
HM Material C	20	0	0
HM Material D	15	0	0
HM Material E	15	4	1
Total Cadm	46		

Method Detection & Reporting Limits

- INSTRUMENT DETECTION LIMIT (IDL): Concentration that produces a signal noise >3X SD of the mean noise level. The IDL is useful for estimating the constituent concentration or amount in an extract needed to produce a signal to permit calculating an estimated method detection limit.
- METHOD DETECTION LIMIT (MDL): Concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is >0. Determined from analysis of a sample in a given matrix type containing the analyte. The MDL should be determined by multiplying the appropriate one-sided 99% t-statistic by the SD obtained from a minimum of three analyses of a matrix spike or CRM containing the analyte at a concentration 3-5X the estimated MDL.

Summary

- Testing is an important part of the compliance "toolbox".
- More CRM's are needed.
- XRF testing has utility at the top of the supply chain as quick check or "screening tool" with cost and speed advantages.
- Traditional analytical testing has utility throughout the supply chain with accuracy, precision, and sensitivity advantages.
- Composite testing has compliance risks.
- Matrix specific method detection limits are more appropriate than instrument detection limits.

End

Restricted Substances Compliance Solutions

Testing and the Challenge of RoHS Compliance

Maxime Elbaz

General Manager
Restricted Substances Strategic Business Unit

Appendix

X-Ray Fluorescence (XRF) vs. ICP

XRF vs ICP

	Custom Compounded PVC Material Pb/Cd (ppm)	Lead Content Results		Cadmium Content Results	
Sample		Universal Calibration WDXRF	Hot Plate (EPA 3050B) / ICP	Universal Calibration WDXRF	Hot Plate (EPA 3050B) / ICP
Α	0/0	0	6.3	0	0.12
В	26/10	40	27.9	0	10.1
C	261/90	270	279.0	100	99.1
D	353/106	330	365.3	80	93.1
E	366/110	360	389.8	70	108.2
F	991/199	930	1019.7	170	183.2
G	1145/298	1150	1215.7	290	357.1

Sample

Α

В

D

X-Ray Fluorescence (XRF) vs. ICP

XRF vs ICP

180

180

570

570

Custom Compounded POF Material

> Pb/Cd (ppm)

249/90

348/110

941/198

1086/296

Lead Conte	ent Results	Cadmium Co	ntent Results
Iniversal	Microwave	Universal	Microwave
alibration	(EPA 3052) /	Calibration	(EPA 3052) /
WDXRF	ICP	WDXRF	ICP

278.6

91.3

109.2